Multilayer Perceptron-based Surrogate Models for Finite Element Analysis

11/17/2022
by   Lawson Oliveira Lima, et al.
0

Many Partial Differential Equations (PDEs) do not have analytical solution, and can only be solved by numerical methods. In this context, Physics-Informed Neural Networks (PINN) have become important in the last decades, since it uses a neural network and physical conditions to approximate any functions. This paper focuses on hypertuning of a PINN, used to solve a PDE. The behavior of the approximated solution when we change the learning rate or the activation function (sigmoid, hyperbolic tangent, GELU, ReLU and ELU) is here analyzed. A comparative study is done to determine the best characteristics in the problem, as well as to find a learning rate that allows fast and satisfactory learning. GELU and hyperbolic tangent activation functions exhibit better performance than other activation functions. A suitable choice of the learning rate results in higher accuracy and faster convergence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro