Multilevel spectral coarsening for graph Laplacian problems with application to reservoir simulation

03/09/2020
by   Andrew T. Barker, et al.
0

We extend previously developed two-level coarsening procedures for graph Laplacian problems written in a mixed saddle point form to the fully recursive multilevel case. The resulting hierarchy of discretizations gives rise to a hierarchy of upscaled models, in the sense that they provide approximation in the natural norms (in the mixed setting). This property enables us to utilize them in three applications: (i) as an accurate reduced model, (ii) as a tool in multilevel Monte Carlo simulations (in application to finite volume discretizations), and (iii) for providing a sequence of nonlinear operators in FAS (full approximation scheme) for solving nonlinear pressure equations discretized by the conservative two-point flux approximation. We illustrate the potential of the proposed multilevel technique in all three applications on a number of popular benchmark problems used in reservoir simulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro