Negative Sampling in Variational Autoencoders

10/07/2019
by   Adrián Csiszárik, et al.
23

We propose negative sampling as an approach to improve the notoriously bad out-of-distribution likelihood estimates of Variational Autoencoder models. Our model pushes latent images of negative samples away from the prior. When the source of negative samples is an auxiliary dataset, such a model can vastly improve on baselines when evaluated on OOD detection tasks. Perhaps more surprisingly, we present a fully unsupervised variant that can also significantly improve detection performance: using the output of the generator as negative samples results in a fully unsupervised model that can be interpreted as adversarially trained.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro