NetMF+: Network Embedding Based on Fast and Effective Single-Pass Randomized Matrix Factorization

10/25/2021
by   Yuyang Xie, et al.
0

In this work, we propose NetMF+, a fast, memory-efficient, scalable, and effective network embedding algorithm developed for a single machine with CPU only. NetMF+ is based on the theoretically grounded embedding method NetMF and leverages the theories from randomized matrix factorization to learn embedding efficiently. We firstly propose a fast randomized eigen-decomposition algorithm for the modified Laplacian matrix. Then, sparse-sign randomized single-pass singular value decomposition (SVD) is utilized to avoid constructing dense matrix and generate promising embedding. To enhance the performance of embedding, we apply spectral propagation in NetMF+. Finally, A high-performance parallel graph processing stack GBBS is used to achieve memory-efficiency. Experiment results show that NetMF+ can learn a powerful embedding from a network with more than 10^11 edges within 1.5 hours at lower memory cost than state-of-the-art methods. The result on ClueWeb with 0.9 billion vertices and 75 billion edges shows that NetMF+ saves more than half of the memory and runtime than the state-of-the-art and has better performance. The source code of NetMF+ will be publicly available after the anonymous peer review.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro