NetSyn: Neural Evolutionary Technique to Synthesize Programs

08/22/2019
by   Shantanu Mandal, et al.
0

Program synthesis using inputs and outputs is a fundamental problem in computer science. Towards that end, we present a framework, called NetSyn, that synthesizes programs using an evolutionary algorithm. NetSyn makes several novel contributions. First, NetSyn uses neural networks as a fitness function. This addresses the principal challenge of evolutionary algorithm: how to design the most effective fitness function. Second, NetSyn combines an evolutionary algorithm with neighborhood search to expedite the convergence process. Third, NetSyn can support a variety of neural network fitness functions uniformly. We evaluated NetSyn to generate programs in a list-based domain specific language. We compared the proposed approach against a state-of-the-art approach to show that NetSyn performs better in synthesizing programs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro