NFI_2: Learning Noise-Free Illuminance-Interpolator for Unsupervised Low-Light Image Enhancement
Low-light situations severely restrict the pursuit of aesthetic quality in consumer photography. Although many efforts are devoted to designing heuristics, it is generally mired in a shallow spiral of tedium, such as piling up complex network architectures and empirical strategies. How to delve into the essential physical principles of illumination compensation has been neglected. Following the way of simplifying the complexity, this paper innovatively proposes a simple and efficient Noise-Free Illumination Interpolator (NFI_2). According to the constraint principle of illuminance and reflectance within a limited dynamic range, as a prior knowledge in the recovery process, we construct a learnable illuminance interpolator and thereby compensating for non-uniform lighting. With the intention of adapting denoising without annotated data, we design a self-calibrated denoiser with the intrinsic image properties to acquire noise-free low-light images. Starting from the properties of natural image manifolds, a self-regularized recovery loss is introduced as a way to encourage more natural and realistic reflectance map. The model architecture and training losses, guided by prior knowledge, complement and benefit each other, forming a powerful unsupervised leaning framework. Comprehensive experiments demonstrate that the proposed algorithm produces competitive qualitative and quantitative results while maintaining favorable generalization capability in unknown real-world scenarios.
READ FULL TEXT