ngram-OAXE: Phrase-Based Order-Agnostic Cross Entropy for Non-Autoregressive Machine Translation

10/08/2022
by   Cunxiao Du, et al.
0

Recently, a new training oaxe loss has proven effective to ameliorate the effect of multimodality for non-autoregressive translation (NAT), which removes the penalty of word order errors in the standard cross-entropy loss. Starting from the intuition that reordering generally occurs between phrases, we extend oaxe by only allowing reordering between ngram phrases and still requiring a strict match of word order within the phrases. Extensive experiments on NAT benchmarks across language pairs and data scales demonstrate the effectiveness and universality of our approach. ngram-oaxe alleviates the multimodality problem with a better modeling of phrase translation. Further analyses show that ngram-oaxe indeed improves the translation of ngram phrases, and produces more fluent translation with a better modeling of sentence structure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset