Non-Local Graph Neural Networks

05/29/2020
by   Meng Liu, et al.
34

Modern graph neural networks (GNNs) learn node embeddings through multilayer local aggregation and achieve great success in applications on assortative graphs. However, tasks on disassortative graphs usually require non-local aggregation. In this work, we propose a simple yet effective non-local aggregation framework with an efficient attention-guided sorting for GNNs. Based on it, we develop various non-local GNNs. We perform thorough experiments to analyze disassortative graph datasets and evaluate our non-local GNNs. Experimental results demonstrate that our non-local GNNs significantly outperform previous state-of-the-art methods on six benchmark datasets of disassortative graphs, in terms of both model performance and efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset