Nonparametric Double Robustness
Use of nonparametric techniques (e.g., machine learning, kernel smoothing, stacking) are increasingly appealing because they do not require precise knowledge of the true underlying models that generated the data under study. Indeed, numerous authors have advocated for their use with standard methods (e.g., regression, inverse probability weighting) in epidemiology. However, when used in the context of such singly robust approaches, nonparametric methods can lead to suboptimal statistical properties, including inefficiency and no valid confidence intervals. Using extensive Monte Carlo simulations, we show how doubly robust methods offer improvements over singly robust approaches when implemented via nonparametric methods. We use 10,000 simulated samples and 50, 100, 200, 600, and 1200 observations to investigate the bias and mean squared error of singly robust (g Computation, inverse probability weighting) and doubly robust (augmented inverse probability weighting, targeted maximum likelihood estimation) estimators under four scenarios: correct and incorrect model specification; and parametric and nonparametric estimation. As expected, results show best performance with g computation under correctly specified parametric models. However, even when based on complex transformed covariates, double robust estimation performs better than singly robust estimators when nonparametric methods are used. Our results suggest that nonparametric methods should be used with doubly instead of singly robust estimation techniques.
READ FULL TEXT