Nonparametric Multiple-Output Center-Outward Quantile Regression

04/25/2022
by   Eustasio del Barrio, et al.
0

Based on the novel concept of multivariate center-outward quantiles introduced recently in Chernozhukov et al. (2017) and Hallin et al. (2021), we are considering the problem of nonparametric multiple-output quantile regression. Our approach defines nested conditional center-outward quantile regression contours and regions with given conditional probability content irrespective of the underlying distribution; their graphs constitute nested center-outward quantile regression tubes. Empirical counterparts of these concepts are constructed, yielding interpretable empirical regions and contours which are shown to consistently reconstruct their population versions in the Pompeiu-Hausdorff topology. Our method is entirely non-parametric and performs well in simulations including heteroskedasticity and nonlinear trends; its power as a data-analytic tool is illustrated on some real datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro