On a linearization of quadratic Wasserstein distance

01/31/2022
by   Philip Greengard, et al.
0

This paper studies the problem of computing a linear approximation of quadratic Wasserstein distance W_2. In particular, we compute an approximation of the negative homogeneous weighted Sobolev norm whose connection to Wasserstein distance follows from a classic linearization of a general Monge-Ampére equation. Our contribution is threefold. First, we provide expository material on this classic linearization of Wasserstein distance including a quantitative error estimate. econd, we reduce the computational problem to solving a elliptic boundary value problem involving the Witten Laplacian, which is a Schrödinger operator of the form H = -Δ + V, and describe an associated embedding. Third, for the case of probability distributions on the unit square [0,1]^2 represented by n × n arrays we present a fast code demonstrating our approach. Several numerical examples are presented.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro