On a method for Rock Classification using Textural Features and Genetic Optimization

07/06/2016
by   Manuel Blanco Valentin, et al.
0

In this work we present a method to classify a set of rock textures based on a Spectral Analysis and the extraction of the texture Features of the resulted images. Up to 520 features were tested using 4 different filters and all 31 different combinations were verified. The classification process relies on a Naive Bayes classifier. We performed two kinds of optimizations: statistical optimization with covariance-based Principal Component Analysis (PCA) and a genetic optimization, for 10,000 randomly defined samples, achieving a final maximum classification success of 91 (without any optimization nor filters used). After the optimization 9 types of features emerged as most relevant.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro