On a seventh order convergent weakly L-stable Newton Cotes formula with application on Burger's equation

11/12/2019
by   Amit Kumar Verma, et al.
0

In this paper we derive 7^th order convergent integration formula in time which is weakly L-stable. To derive the method we use, Newton Cotes formula, fifth-order Hermite interpolation polynomial approximation (osculatory interpolation) and sixth-order explicit backward Taylor's polynomial approximation. The vector form of this formula is used to solve Burger's equation which is one dimensional form of Navier-Stokes equation. We observe that the method gives high accuracy results in the case of inconsistencies as well as for small values of viscosity, e.g., 10^-3. Computations are performed by using Mathematica 11.3. Stability and convergence of the schemes are also proved. To check the efficiency of the method we considered 6 test examples and several tables and figures are generated which verify all results of the paper.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro