On bounded pitch inequalities for the min-knapsack polytope

01/26/2018
by   Yuri Faenza, et al.
0

In the min-knapsack problem one aims at choosing a set of objects with minimum total cost and total profit above a given threshold. In this paper, we study a class of valid inequalities for min-knapsack known as bounded pitch inequalities, which generalize the well-known unweighted cover inequalities. While separating over pitch-1 inequalities is NP-hard, we show that approximate separation over the set of pitch-1 and pitch-2 inequalities can be done in polynomial time. We also investigate integrality gaps of linear relaxations for min-knapsack when these inequalities are added. Among other results, we show that, for any fixed t, the t-th CG closure of the natural linear relaxation has the unbounded integrality gap.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro