On classical and Bayesian inference for bivariate Poisson conditionals distributions: Theory, methods and applications
Bivariate count data arise in several different disciplines (epidemiology, marketing, sports statistics, etc., to name but a few) and the bivariate Poisson distribution which is a generalization of the Poisson distribution plays an important role in modeling such data. In this article, we consider the inferential aspect of a bivariate Poisson conditionals distribution for which both the conditionals are Poisson but the marginals are typically non-Poisson. It has Poisson marginals only in the case of independence. It appears that a simple iterative procedure under the maximum likelihood method performs quite well as compared with other numerical subroutines, as one would expect in such a case where the MLEs are not available in closed form. In the Bayesian paradigm, both conjugate priors and non-conjugate priors have been utilized and a comparison study has been made via a simulation study. For illustrative purposes, a real-life data set is re-analyzed to exhibit the utility of the proposed two methods of estimation, one under the frequentist approach and the other under the Bayesian paradigm.
READ FULL TEXT