On clustering levels of a hierarchical categorical risk factor
Handling nominal covariates with a large number of categories is challenging for both statistical and machine learning techniques. This problem is further exacerbated when the nominal variable has a hierarchical structure. The industry code in a workers' compensation insurance product is a prime example hereof. We commonly rely on methods such as the random effects approach (Campo and Antonio, 2023) to incorporate these covariates in a predictive model. Nonetheless, in certain situations, even the random effects approach may encounter estimation problems. We propose the data-driven Partitioning Hierarchical Risk-factors Adaptive Top-down (PHiRAT) algorithm to reduce the hierarchically structured risk factor to its essence, by grouping similar categories at each level of the hierarchy. We work top-down and engineer several features to characterize the profile of the categories at a specific level in the hierarchy. In our workers' compensation case study, we characterize the risk profile of an industry via its observed damage rates and claim frequencies. In addition, we use embeddings (Mikolov et al., 2013; Cer et al., 2018) to encode the textual description of the economic activity of the insured company. These features are then used as input in a clustering algorithm to group similar categories. We show that our method substantially reduces the number of categories and results in a grouping that is generalizable to out-of-sample data. Moreover, when estimating the technical premium of the insurance product under study as a function of the clustered hierarchical risk factor, we obtain a better differentiation between high-risk and low-risk companies.
READ FULL TEXT