On Dependent Dirichlet Processes for General Polish Spaces

05/11/2022
by   Andres Iturriaga, et al.
0

We study Dirichlet process-based models for sets of predictor-dependent probability distributions, where the domain and predictor space are general Polish spaces. We generalize the definition of dependent Dirichlet processes, originally constructed on Euclidean spaces, to more general Polish spaces. We provide sufficient conditions under which dependent Dirichlet processes have appealing properties regarding continuity (weak and strong), association structure, and support (under different topologies). We also provide sufficient conditions under which mixture models induced by dependent Dirichlet processes have appealing properties regarding strong continuity, association structure, support, and weak consistency under i.i.d. sampling of both responses and predictors. The results can be easily extended to more general dependent stick-breaking processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset