On Measuring the Variability of Small Area Estimators in a Multivariate Fay-Herriot Model
This paper is concerned with the small area estimation in the multivariate Fay-Herriot model where covariance matrix of random effects are fully unknown. The covariance matrix is estimated by a Prasad-Rao type consistent estimator, and the empirical best linear un- biased predictor (EBLUP) of a vector of small area characteristics is provided. When the EBLUP is measured in terms of a mean squared error matrix (MSEM), a second-order approximation of MSEM of the EBLUP and a second-order unbiased estimator of the MSEM is derived analytically in closed forms. The performance is investigated through numerical and empirical studies.
READ FULL TEXT