On Optimal Battery Sizing for Households Participating in Demand-Side Management Schemes

04/24/2019
by   Matthias Pilz, et al.
0

The smart grid with its two-way communication and bi-directional power layers is a cornerstone in the combat against global warming. It allows for the large scale adoption of distributed (individually-owned) renewable energy resources such as solar photovoltaic systems. Their intermittency poses a threat to the stability of the grid which can be addressed by the introduction of energy storage systems. Determining the optimal capacity of a battery has been an active area of research in recent years. In this research an in-depth analysis of the relation between optimal capacity, and demand and generation patterns is performed for households taking part in a community-wide demand-side management scheme. The scheme is based on a non-cooperative dynamic game approach in which participants compete for the lowest electricity bill by scheduling their energy storage systems. The results are evaluated based on self-consumption, the peak-to-average ratio of the aggregated load, and potential cost reductions. Furthermore, the difference between individually-owned batteries to a centralised community energy storage system serving the whole community is investigated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro