On Pseudo-Labeling for Class-Mismatch Semi-Supervised Learning

01/15/2023
by   Lu Han, et al.
0

When there are unlabeled Out-Of-Distribution (OOD) data from other classes, Semi-Supervised Learning (SSL) methods suffer from severe performance degradation and even get worse than merely training on labeled data. In this paper, we empirically analyze Pseudo-Labeling (PL) in class-mismatched SSL. PL is a simple and representative SSL method that transforms SSL problems into supervised learning by creating pseudo-labels for unlabeled data according to the model's prediction. We aim to answer two main questions: (1) How do OOD data influence PL? (2) What is the proper usage of OOD data with PL? First, we show that the major problem of PL is imbalanced pseudo-labels on OOD data. Second, we find that OOD data can help classify In-Distribution (ID) data given their OOD ground truth labels. Based on the findings, we propose to improve PL in class-mismatched SSL with two components – Re-balanced Pseudo-Labeling (RPL) and Semantic Exploration Clustering (SEC). RPL re-balances pseudo-labels of high-confidence data, which simultaneously filters out OOD data and addresses the imbalance problem. SEC uses balanced clustering on low-confidence data to create pseudo-labels on extra classes, simulating the process of training with ground truth. Experiments show that our method achieves steady improvement over supervised baseline and state-of-the-art performance under all class mismatch ratios on different benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro