On spectral distribution of sample covariance matrices from large dimensional and large k-fold tensor products

12/11/2021
by   Benoît Collins, et al.
0

We study the eigenvalue distributions for sums of independent rank-one k-fold tensor products of large n-dimensional vectors. Previous results in the literature assume that k=o(n) and show that the eigenvalue distributions converge to the celebrated Marčenko-Pastur law under appropriate moment conditions on the base vectors. In this paper, motivated by quantum information theory, we study the regime where k grows faster, namely k=O(n). We show that the moment sequences of the eigenvalue distributions have a limit, which is different from the Marčenko-Pastur law. As a byproduct, we show that the Marčenko-Pastur law limit holds if and only if k=o(n) for this tensor model. The approach is based on the method of moments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro