On the Bipartite Entanglement Capacity of Quantum Networks

07/10/2023
by   Gayane Vardoyan, et al.
0

We consider the problem of multi-path entanglement distribution to a pair of nodes in a quantum network consisting of devices with non-deterministic entanglement swapping capabilities. Multi-path entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with pre-established link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case when, due to architectural and other practical constraints, swaps must be performed in temporal proximity to each other. Limiting our focus to the case where only bipartite entangled states are generated across the network, we cast the problem as an instance of generalized flow maximization between two quantum end nodes wishing to communicate. We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum number of EPR states distributed to users per time unit, by solving the flow problem for all possible network states generated by probabilistic entangled link presence and absence, and subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks with multiplexed links. While our approach for computing the overall network capacity has the undesirable property that the total number of states grows exponentially with link multiplexing capability, it nevertheless yields an exact solution that serves as an upper bound comparison basis for the throughput performance of easily-implementable yet non-optimal entanglement routing algorithms. We apply our capacity computation method to several networks, including a topology based on SURFnet – a backbone network used for research purposes in the Netherlands.

READ FULL TEXT

page 1

page 3

page 5

page 6

page 7

page 8

page 9

page 11

research
03/22/2023

Entanglement Routing Based on Fidelity Curves for Quantum Photonics Channels

The quantum internet promises to extend entanglement correlations from n...
research
01/06/2018

Decentralized Base-Graph Routing for the Quantum Internet

Quantum repeater networks are a fundamental of any future quantum Intern...
research
02/04/2023

Entanglement capacity of fermionic Gaussian states

We study the capacity of entanglement as an alternative to entanglement ...
research
07/03/2023

Performance metrics for the continuous distribution of entanglement in multi-user quantum networks

Entangled states shared among distant nodes are frequently used in quant...
research
04/23/2019

α-Logarithmic negativity

The logarithmic negativity of a bipartite quantum state is a widely empl...
research
06/01/2021

Stability Analysis of a Quantum Network with Max-Weight Scheduling

We study a quantum network that distributes entangled quantum states to ...
research
03/11/2019

Performance Evaluation of a Quantum Entanglement Switch

We study a quantum entanglement switch that serves k users in a star top...

Please sign up or login with your details

Forgot password? Click here to reset