On the Degrees of Freedom of the MISO Interference Broadcast Channel with Delayed CSIT

11/13/2019
by   Marc Torrellas, et al.
0

The Maddah-Ali and Tse (MAT) scheme is a linear precoding strategy that exploits Interference Alignment and perfect, but delayed, channel state information at the transmitters (delayed CSIT), improving the degrees of freedom (DoF) that can be achieved for the broadcast channel (BC). Since its appearance, many works have extended the concept of Retrospective Interference Alignment (RIA) to other multi-user channel configurations. However, little is known about the broadcast channel with multiple cells, i.e. the interference broadcast channel (IBC). In this work, the DoF are studied for the K-user C-cell multiple-input single-output (MISO) IBC with delayed CSIT (with K/C users per cell). We show that the straightforward application of the MAT scheme over the IBC fails because it requires all interference to be received from the same source. Hence, in this case not all the interference can be cancelled, thus blocking the decoding of the received messages. We call this phenomenon as interference coupling, forcing to use the MAT scheme by serving just one cell at a time. In this work, we propose an extension, namely the uncoupled MAT scheme (uMAT), exploiting multiple cells, uncoupling the interference, and achieving the best known DoF inner bound for almost all settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset