On the Hardness of Average-case k-SUM

10/17/2020
by   Zvika Brakerski, et al.
0

In this work, we show the first worst-case to average-case reduction for the classical k-SUM problem. A k-SUM instance is a collection of m integers, and the goal of the k-SUM problem is to find a subset of k elements that sums to 0. In the average-case version, the m elements are chosen uniformly at random from some interval [-u,u]. We consider the total setting where m is sufficiently large (with respect to u and k), so that we are guaranteed (with high probability) that solutions must exist. Much of the appeal of k-SUM, in particular connections to problems in computational geometry, extends to the total setting. The best known algorithm in the average-case total setting is due to Wagner (following the approach of Blum-Kalai-Wasserman), and achieves a run-time of u^O(1/log k). This beats the known (conditional) lower bounds for worst-case k-SUM, raising the natural question of whether it can be improved even further. However, in this work, we show a matching average-case lower-bound, by showing a reduction from worst-case lattice problems, thus introducing a new family of techniques into the field of fine-grained complexity. In particular, we show that any algorithm solving average-case k-SUM on m elements in time u^o(1/log k) will give a super-polynomial improvement in the complexity of algorithms for lattice problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro