On the Optimal Time/Space Tradeoff for Hash Tables

10/31/2021
by   Michael A. Bender, et al.
0

For nearly six decades, the central open question in the study of hash tables has been to determine the optimal achievable tradeoff curve between time and space. State-of-the-art hash tables offer the following guarantee: If keys/values are Theta(log n) bits each, then it is possible to achieve constant-time insertions/deletions/queries while wasting only O(loglog n) bits of space per key when compared to the information-theoretic optimum. Even prior to this bound being achieved, the target of O(loglog n) wasted bits per key was known to be a natural end goal, and was proven to be optimal for a number of closely related problems (e.g., stable hashing, dynamic retrieval, and dynamically-resized filters). This paper shows that O(loglog n) wasted bits per key is not the end of the line for hashing. In fact, for any k ∈[log* n], it is possible to achieve O(k)-time insertions/deletions, O(1)-time queries, and O(log^(k) n) wasted bits per key (all with high probability in n). This means that, each time we increase insertion/deletion time by an additive constant, we reduce the wasted bits per key exponentially. We further show that this tradeoff curve is the best achievable by any of a large class of hash tables, including any hash table designed using the current framework for making constant-time hash tables succinct.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro