On the proper interval completion problem within some chordal subclasses

10/14/2021
by   Francois Dross, et al.
0

Given a property (graph class) Π, a graph G, and an integer k, the Π-completion problem consists in deciding whether we can turn G into a graph with the property Π by adding at most k edges to G. The Π-completion problem is known to be NP-hard for general graphs when Π is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem (PIG) within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro