On the two-step estimation of the cross--power spectrum for dynamical inverse problems

09/03/2019
by   Elisabetta Vallarino, et al.
0

We consider the problem of reconstructing the cross--power spectrum of an unobservable multivariate stochatic process from indirect measurements of a second multivariate stochastic process, related to the first one through a linear operator. In the two--step approach, one would first compute a regularized reconstruction of the unobservable signal, and then compute an estimate of its cross--power spectrum from the regularized solution. We investigate whether the optimal regularization parameter for reconstruction of the signal also gives the best estimate of the cross--power spectrum. We show that the answer depends on the regularization method, and specifically we prove that, under a white Gaussian assumption: (i) when regularizing with truncated SVD the optimal parameter is the same; (ii) when regularizing with the Tikhonov method, the optimal parameter for the cross--power spectrum is lower than half the optimal parameter for the signal. We also provide evidence that a one--step approach would likely have better mathematical properties of the two--step approach. Our results apply particularly to the brain connectivity estimation from magneto/electro-encephalographic recordings and provide a formal interpretation of recent empirical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro