On the VC-dimension of convex sets and half-spaces

07/02/2019
by   Nicolas Grelier, et al.
0

A family S of convex sets in the plane defines a hypergraph H = (S,E) as follows. Every subfamily S'⊂ S defines a hyperedge of H if and only if there exists a halfspace h that fully contains S', and no other set of S is fully contained in h. In this case, we say that h realizes S'. We say a set S is shattered, if all its subsets are realized. The VC-dimension of a hypergraph H is the size of the largest shattered set. We show that the VC-dimension for pairwise disjoint convex sets in the plane is bounded by 3, and this is tight. In contrast, we show the VC-dimension of convex sets in the plane (not necessarily disjoint) is unbounded. We also show that the VC-dimension is unbounded for pairwise disjoint convex sets in R^d, for d≥ 3. We focus on, possibly intersecting, segments in the plane and determine that the VC-dimension is always at most 5. And this is tight, as we construct a set of five segments that can be shattered. We give two exemplary applications. One for a geometric set cover problem and one for a range-query data structure problem, to motivate our findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro