Open Set Domain Adaptation: Theoretical Bound and Algorithm

07/19/2019
by   Zhen Fang, et al.
2

Unsupervised domain adaptation for classification tasks has achieved great progress in leveraging the knowledge in a labeled (source) domain to improve the task performance in an unlabeled (target) domain by mitigating the effect of distribution discrepancy. However, most existing methods can only handle unsupervised closed set domain adaptation (UCSDA), where the source and target domains share the same label set. In this paper, we target a more challenging but realistic setting: unsupervised open set domain adaptation (UOSDA), where the target domain has unknown classes that the source domain does not have. This study is the first to give the generalization bound of open set domain adaptation through theoretically investigating the risk of the target classifier on the unknown classes. The proposed generalization bound for open set domain adaptation has a special term, namely open set difference, which reflects the risk of the target classifier on unknown classes. According to this generalization bound, we propose a novel and theoretically guided unsupervised open set domain adaptation method: Distribution Alignment with Open Difference (DAOD), which is based on the structural risk minimization principle and open set difference regularization. The experiments on several benchmark datasets show the superior performance of the proposed UOSDA method compared with the state-of-the-art methods in the literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset