Optimal lower bounds for Quantum Learning via Information Theory
Although a concept class may be learnt more efficiently using quantum samples as compared with classical samples in certain scenarios, Arunachalam and de Wolf (JMLR, 2018) proved that quantum learners are asymptotically no more efficient than classical ones in the quantum PAC and Agnostic learning models. They established lower bounds on sample complexity via quantum state identification and Fourier analysis. In this paper, we derive optimal lower bounds for quantum sample complexity in both the PAC and agnostic models via an information-theoretic approach. The proofs are arguably simpler, and the same ideas can potentially be used to derive optimal bounds for other problems in quantum learning theory. We then turn to a quantum analogue of the Coupon Collector problem, a classic problem from probability theory also of importance in the study of PAC learning. Arunachalam, Belovs, Childs, Kothari, Rosmanis, and de Wolf (TQC, 2020) characterized the quantum sample complexity of this problem up to constant factors. First, we show that the information-theoretic approach mentioned above provably does not yield the optimal lower bound. As a by-product, we get a natural ensemble of pure states in arbitrarily high dimensions which are not easily (simultaneously) distinguishable, while the ensemble has close to maximal Holevo information. Second, we discover that the information-theoretic approach yields an asymptotically optimal bound for an approximation variant of the problem. Finally, we derive a sharp lower bound for the Quantum Coupon Collector problem, with the exact leading order term, via the generalized Holevo-Curlander bounds on the distinguishability of an ensemble. All the aspects of the Quantum Coupon Collector problem we study rest on properties of the spectrum of the associated Gram matrix, which may be of independent interest.
READ FULL TEXT