Optimal Parameter-free Online Learning with Switching Cost

05/13/2022
by   Zhiyu Zhang, et al.
0

Parameter-freeness in online learning refers to the adaptivity of an algorithm with respect to the optimal decision in hindsight. In this paper, we design such algorithms in the presence of switching cost - the latter penalizes the optimistic updates required by parameter-freeness, leading to a delicate design trade-off. Based on a novel dual space scaling strategy, we propose a simple yet powerful algorithm for Online Linear Optimization (OLO) with switching cost, which improves the existing suboptimal regret bound [ZCP22a] to the optimal rate. The obtained benefit is extended to the expert setting, and the practicality of our algorithm is demonstrated through a sequential investment task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset