Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online Algorithms

10/22/2020
by   Alexander Wei, et al.
0

We study the problem of improving the performance of online algorithms by incorporating machine-learned predictions. The goal is to design algorithms that are both consistent and robust, meaning that the algorithm performs well when predictions are accurate and maintains worst-case guarantees. Such algorithms have been studied in a recent line of works due to Lykouris and Vassilvitskii (ICML '18) and Purohit et al (NeurIPS '18). They provide robustness-consistency trade-offs for a variety of online problems. However, they leave open the question of whether these trade-offs are tight, i.e., to what extent to such trade-offs are necessary. In this paper, we provide the first set of non-trivial lower bounds for competitive analysis using machine-learned predictions. We focus on the classic problems of ski-rental and non-clairvoyant scheduling and provide optimal trade-offs in various settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro