Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

12/05/2011
by   Jan Lellmann, et al.
0

We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods for finite-dimensional problems. While for the latter case several optimality bounds are known, to our knowledge no such bounds exist in the continuous setting. We provide such a bound by analyzing a probabilistic rounding method, showing that it is possible to obtain an integral solution of the original partitioning problem from a solution of the relaxed problem with an a priori upper bound on the objective, ensuring the quality of the result from the viewpoint of optimization. The approach has a natural interpretation as an approximate, multiclass variant of the celebrated coarea formula.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro