Optimization towards Efficiency and Stateful of dispel4py
Scientific workflows bridge scientific challenges with computational resources. While dispel4py, a stream-based workflow system, offers mappings to parallel enactment engines like MPI or Multiprocessing, its optimization primarily focuses on dynamic process-to-task allocation for improved performance. An efficiency gap persists, particularly with the growing emphasis on conserving computing resources. Moreover, the existing dynamic optimization lacks support for stateful applications and grouping operations. To address these issues, our work introduces a novel hybrid approach for handling stateful operations and groupings within workflows, leveraging a new Redis mapping. We also propose an auto-scaling mechanism integrated into dispel4py's dynamic optimization. Our experiments showcase the effectiveness of auto-scaling optimization, achieving efficiency while upholding performance. In the best case, auto-scaling reduces dispel4py's runtime to 87 using only 76 dispel4py demonstrates a remarkable speedup, utilizing just 32 compared to the contender.
READ FULL TEXT