Optimized Transmission for Parameter Estimation in Wireless Sensor Networks

08/01/2019
by   Shahin Khobahi, et al.
0

A central problem in analog wireless sensor networks is to design the gain or phase-shifts of the sensor nodes (i.e. the relaying configuration) in order to achieve an accurate estimation of some parameter of interest at a fusion center, or more generally, at each node by employing a distributed parameter estimation scheme. In this paper, by using an over-parametrization of the original design problem, we devise a cyclic optimization approach that can handle tuning both gains and phase-shifts of the sensor nodes, even in intricate scenarios involving sensor selection or discrete phase-shifts. Each iteration of the proposed design framework consists of a combination of the Gram-Schmidt process and power method-like iterations, and as a result, enjoys a low computational cost. Along with formulating the design problem for a fusion center, we further present a consensus-based framework for decentralized estimation of deterministic parameters in a distributed network, which results in a similar sensor gain design problem. The numerical results confirm the computational advantage of the suggested approach in comparison with the state-of-the-art methods—an advantage that becomes more pronounced when the sensor network grows large.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro