Out-of-focus Blur: Image De-blurring
Image de-blurring is important in many cases of imaging a real scene or object by a camera. This project focuses on de-blurring an image distorted by an out-of-focus blur through a simulation study. A pseudo-inverse filter is first explored but it fails because of severe noise amplification. Then Tikhonov regularization methods are employed, which produce greatly improved results compared to the pseudo-inverse filter. In Tikhonov regularization, the choice of the regularization parameter plays a critical rule in obtaining a high-quality image, and the regularized solutions possess a semi-convergence property. The best result, with the relative restoration error of 8.49 achieved when the prescribed discrepancy principle is used to decide an optimal value. Furthermore, an iterative method, Conjugated Gradient, is employed for image de-blurring, which is fast in computation and leads to an even better result with the relative restoration error of 8.22 CG acts as a regularization parameter, and the iterates have a semi-convergence property as well.
READ FULL TEXT