P-NOC: Adversarial CAM Generation for Weakly Supervised Semantic Segmentation

05/21/2023
by   Lucas David, et al.
0

To mitigate the necessity for large amounts of supervised segmentation annotation sets, multiple Weakly Supervised Semantic Segmentation (WSSS) strategies have been devised. These will often rely on advanced data and model regularization strategies to instigate the development of useful properties (e.g., prediction completeness and fidelity to semantic boundaries) in segmentation priors, notwithstanding the lack of annotated information. In this work, we first create a strong baseline by analyzing complementary WSSS techniques and regularizing strategies, considering their strengths and limitations. We then propose a new Class-specific Adversarial Erasing strategy, comprising two adversarial CAM generating networks being gradually refined to produce robust semantic segmentation proposals. Empirical results suggest that our approach induces substantial improvement in the effectiveness of the baseline, resulting in a noticeable improvement over both Pascal VOC 2012 and MS COCO 2014 datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset