Painting the black box white: experimental findings from applying XAI to an ECG reading setting
The shift from symbolic AI systems to black-box, sub-symbolic, and statistical ones has motivated a rapid increase in the interest toward explainable AI (XAI), i.e. approaches to make black-box AI systems explainable to human decision makers with the aim of making these systems more acceptable and more usable tools and supports. However, we make the point that, rather than always making black boxes transparent, these approaches are at risk of painting the black boxes white, thus failing to provide a level of transparency that would increase the system's usability and comprehensibility; or, even, at risk of generating new errors, in what we termed the white-box paradox. To address these usability-related issues, in this work we focus on the cognitive dimension of users' perception of explanations and XAI systems. To this aim, we designed and conducted a questionnaire-based experiment by which we involved 44 cardiology residents and specialists in an AI-supported ECG reading task. In doing so, we investigated different research questions concerning the relationship between users' characteristics (e.g. expertise) and their perception of AI and XAI systems, including their trust, the perceived explanations' quality and their tendency to defer the decision process to automation (i.e. technology dominance), as well as the mutual relationships among these different dimensions. Our findings provide a contribution to the evaluation of AI-based support systems from a Human-AI interaction-oriented perspective and lay the ground for further investigation of XAI and its effects on decision making and user experience.
READ FULL TEXT