Parameterized Algorithms for Kidney Exchange

12/19/2021
by   Arnab Maiti, et al.
0

In kidney exchange programs, multiple patient-donor pairs each of whom are otherwise incompatible, exchange their donors to receive compatible kidneys. The Kidney Exchange problem is typically modelled as a directed graph where every vertex is either an altruistic donor or a pair of patient and donor; directed edges are added from a donor to its compatible patients. The computational task is to find if there exists a collection of disjoint cycles and paths starting from altruistic donor vertices of length at most l_c and l_p respectively that covers at least some specific number t of non-altruistic vertices (patients). We study parameterized algorithms for the kidney exchange problem in this paper. Specifically, we design FPT algorithms parameterized by each of the following parameters: (1) the number of patients who receive kidney, (2) treewidth of the input graph + maxl_p, l_c, and (3) the number of vertex types in the input graph when l_p <= l_c. We also present interesting algorithmic and hardness results on the kernelization complexity of the problem. Finally, we present an approximation algorithm for an important special case of Kidney Exchange.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset