Particle Filtering on the Audio Localization Manifold

03/02/2010
by   Evan Ettinger, et al.
0

We present a novel particle filtering algorithm for tracking a moving sound source using a microphone array. If there are N microphones in the array, we track all N 2 delays with a single particle filter over time. Since it is known that tracking in high dimensions is rife with difficulties, we instead integrate into our particle filter a model of the low dimensional manifold that these delays lie on. Our manifold model is based off of work on modeling low dimensional manifolds via random projection trees [1]. In addition, we also introduce a new weighting scheme to our particle filtering algorithm based on recent advancements in online learning. We show that our novel TDOA tracking algorithm that integrates a manifold model can greatly outperform standard particle filters on this audio tracking task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro