Performance Impact Caused by Hidden Bias of Training Data for Recognizing Textual Entailment
The quality of training data is one of the crucial problems when a learning-centered approach is employed. This paper proposes a new method to investigate the quality of a large corpus designed for the recognizing textual entailment (RTE) task. The proposed method, which is inspired by a statistical hypothesis test, consists of two phases: the first phase is to introduce the predictability of textual entailment labels as a null hypothesis which is extremely unacceptable if a target corpus has no hidden bias, and the second phase is to test the null hypothesis using a Naive Bayes model. The experimental result of the Stanford Natural Language Inference (SNLI) corpus does not reject the null hypothesis. Therefore, it indicates that the SNLI corpus has a hidden bias which allows prediction of textual entailment labels from hypothesis sentences even if no context information is given by a premise sentence. This paper also presents the performance impact of NN models for RTE caused by this hidden bias.
READ FULL TEXT