Pinball Loss Minimization for One-bit Compressive Sensing

05/14/2015
by   Xiaolin Huang, et al.
0

The one-bit quantization can be implemented by one single comparator, which operates at low power and a high rate. Hence one-bit compressive sensing (1bit-CS) becomes very attractive in signal processing. When the measurements are corrupted by noise during signal acquisition and transmission, 1bit-CS is usually modeled as minimizing a loss function with a sparsity constraint. The existing loss functions include the hinge loss and the linear loss. Though 1bit-CS can be regarded as a binary classification problem because a one-bit measurement only provides the sign information, the choice of the hinge loss over the linear loss in binary classification is not true for 1bit-CS. Many experiments show that the linear loss performs better than the hinge loss for 1bit-CS. Motivated by this observation, we consider the pinball loss, which provides a bridge between the hinge loss and the linear loss. Using this bridge, two 1bit-CS models and two corresponding algorithms are proposed. Pinball loss iterative hard thresholding improves the performance of the binary iterative hard theresholding proposed in [6] and is suitable for the case when the sparsity of the true signal is given. Elastic-net pinball support vector machine generalizes the passive model proposed in [11] and is suitable for the case when the sparsity of the true signal is not given. A fast dual coordinate ascent algorithm is proposed to solve the elastic-net pinball support vector machine problem, and its convergence is proved. The numerical experiments demonstrate that the pinball loss, as a trade-off between the hinge loss and the linear loss, improves the existing 1bit-CS models with better performances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro