Pointwise distance distributions of periodic sets

08/10/2021
by   Daniel Widdowson, et al.
0

The fundamental model of a periodic structure is a periodic set of points considered up to rigid motion or isometry in Euclidean space. The recent work by Edelsbrunner et al defined the new isometry invariants (density functions), which are continuous under perturbations of points and complete for generic sets in dimension 3. This work introduces much faster invariants called higher order Pointwise Distance Distributions (PDD). The new PDD invariants are simpler represented by numerical matrices and are also continuous under perturbations important for applications. Completeness of PDD invariants is proved for distance-generic sets in any dimension, which was also confirmed by distinguishing all 229K known molecular organic structures from the world's largest Cambridge Structural Database. This huge experiment took only seven hours on a modest desktop due to the proposed algorithm with a near linear or small polynomial complexity in terms of key input sizes. Most importantly, the above completeness allows one to build a common map of all periodic structures, which are continuously parameterized by PDD and explicitly reconstructible from PDD. Appendices include first tree-based maps for several thousands of real structures.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset