Poisson-Tweedie mixed-effects model: a flexible approach for the analysis of longitudinal RNA-seq data

04/23/2020
by   Mirko Signorelli, et al.
0

We present a new modelling approach for longitudinal count data that is motivated by the increasing availability of longitudinal RNA-sequencing experiments. The distribution of RNA-seq counts typically exhibits overdispersion, zero-inflation and heavy tails; moreover, in longitudinal designs repeated measurements from the same subject are typically (positively) correlated. We propose a generalized linear mixed model based on the Poisson-Tweedie distribution that can flexibly handle each of the aforementioned features of longitudinal RNA-seq counts. We develop a computational approach to accurately evaluate the likelihood of the proposed model and to perform maximum likelihood estimation. Our approach is implemented in the R package ptmixed, which can be freely downloaded from CRAN. We assess the performance of ptmixed on simulated data and we present an application to a dataset with longitudinal RNA-sequencing measurements from healthy and dystrophic mice. The applicability of the Poisson-Tweedie mixed-effects model is not restricted to longitudinal RNA-seq data, but it extends to any scenario where non-independent measurements of a discrete overdispersed response variable are available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro