Polynomial Cost of Adaptation for X -Armed Bandits

05/24/2019
by   Hédi Hadiji, et al.
0

In the context of stochastic continuum-armed bandits, we present an algorithm that adapts to the unknown smoothness of the objective function. We exhibit and compute a polynomial cost of adaptation to the Hölder regularity for regret minimization. To do this, we first reconsider the recent lower bound of Locatelli and Carpentier [20], and define and characterize admissible rate functions. Our new algorithm matches any of these minimal rate functions. We provide a finite-time analysis and a thorough discussion about asymptotic optimality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro