Posterior Contraction and Testing for Multivariate Isotonic Regression

by   Kang Wang, et al.

We consider the nonparametric regression problem with multiple predictors and an additive error, where the regression function is assumed to be coordinatewise nondecreasing. We propose a Bayesian approach to make an inference on the multivariate monotone regression function, obtain the posterior contraction rate, and construct a universally consistent Bayesian testing procedure for multivariate monotonicity. To facilitate posterior analysis, we set aside the shape restrictions temporarily, and endow a prior on blockwise constant regression functions with heights independently normally distributed. The unknown variance of the error term is either estimated by the marginal maximum likelihood estimate or is equipped with an inverse-gamma prior. Then the unrestricted block heights are a posteriori also independently normally distributed given the error variance, by conjugacy. To comply with the shape restrictions, we project samples from the unrestricted posterior onto the class of multivariate monotone functions, inducing the "projection-posterior distribution", to be used for making an inference. Under an 𝕃_1-metric, we show that the projection-posterior based on n independent samples contracts around the true monotone regression function at the optimal rate n^-1/(2+d). Then we construct a Bayesian test for multivariate monotonicity based on the posterior probability of a shrinking neighborhood of the class of multivariate monotone functions. We show that the test is universally consistent, that is, the level of the Bayesian test goes to zero, and the power at any fixed alternative goes to one. Moreover, we show that for a smooth alternative function, power goes to one as long as its distance to the class of multivariate monotone functions is at least of the order of the estimation error for a smooth function.


page 1

page 2

page 3

page 4

βˆ™ 08/03/2020

Convergence Rates for Bayesian Estimation and Testing in Monotone Regression

Shape restrictions such as monotonicity on functions often arise natural...
βˆ™ 09/01/2011

Bayesian nonparametric multivariate convex regression

In many applications, such as economics, operations research and reinfor...
βˆ™ 06/08/2023

Bayesian Inference for Multivariate Monotone Densities

We consider a nonparametric Bayesian approach to estimation and testing ...
βˆ™ 11/22/2022

Coverage of Credible Intervals in Bayesian Multivariate Isotonic Regression

We consider the nonparametric multivariate isotonic regression problem, ...
βˆ™ 11/18/2019

A projection approach for multiple monotone regression

Shape-constrained inference has wide applicability in bioassay, medicine...
βˆ™ 05/30/2020

Bayesian Nonparametric Monotone Regression

In many applications there is interest in estimating the relation betwee...
βˆ™ 08/16/2021

Bayesian sequential composite hypothesis testing in discrete time

We study the sequential testing problem of two alternative hypotheses re...

Please sign up or login with your details

Forgot password? Click here to reset