Power Efficiency, Overhead, and Complexity Tradeoff in IRS-Assisted Communications – Quadratic Phase-Shift Design

09/13/2020
by   Vahid Jamali, et al.
0

In this paper, we focus on large intelligent reflecting surfaces (IRSs) and propose a new codebook construction method to obtain a set of predesigned phase-shift configurations for the IRS unit cells. Since the overhead for channel estimation and the complexity of online optimization for IRS-assisted communications scale with the size of the phase-shift codebook, the design of small codebooks is of high importance. We show that there exists a fundamental tradeoff between power efficiency and the size of the codebook. We first analyze this tradeoff for baseline designs that employ a linear phase-shift across the IRS. Subsequently, we show that an efficient design for small codebooks mandates higher-order phase-shift variations across the IRS. Consequently, we propose a quadratic phase-shift design, derive its coefficients as a function of the codebook size, and analyze its performance. Our simulation results show that the proposed design yields a higher power efficiency for small codebooks than the linear baseline designs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro