PPGnet: Deep Network for Device Independent Heart Rate Estimation from Photoplethysmogram

03/21/2019
by   Shyam A, et al.
0

Photoplethysmogram (PPG) is increasingly used to provide monitoring of the cardiovascular system under ambulatory conditions. Wearable devices like smartwatches use PPG to allow long term unobtrusive monitoring of heart rate in free living conditions. PPG based heart rate measurement is unfortunately highly susceptible to motion artifacts, particularly when measured from the wrist. Traditional machine learning and deep learning approaches rely on tri-axial accelerometer data along with PPG to perform heart rate estimation. The conventional learning based approaches have not addressed the need for device-specific modeling due to differences in hardware design among PPG devices. In this paper, we propose a novel end to end deep learning model to perform heart rate estimation using 8 second length input PPG signal. We evaluate the proposed model on the IEEE SPC 2015 dataset, achieving a mean absolute error of 3.36+-4.1BPM for HR estimation on 12 subjects without requiring patient specific training. We also studied the feasibility of applying transfer learning along with sparse retraining from a comprehensive in house PPG dataset for heart rate estimation across PPG devices with different hardware design.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset