Pre-train, Interact, Fine-tune: A Novel Interaction Representation for Text Classification

09/26/2019
by   Jianming Zheng, et al.
0

Text representation can aid machines in understanding text. Previous work on text representation often focuses on the so-called forward implication, i.e., preceding words are taken as the context of later words for creating representations, thus ignoring the fact that the semantics of a text segment is a product of the mutual implication of words in the text: later words contribute to the meaning of preceding words. We introduce the concept of interaction and propose a two-perspective interaction representation, that encapsulates a local and a global interaction representation. Here, a local interaction representation is one that interacts among words with parent-children relationships on the syntactic trees and a global interaction interpretation is one that interacts among all the words in a sentence. We combine the two interaction representations to develop a Hybrid Interaction Representation (HIR). Inspired by existing feature-based and fine-tuning-based pretrain-finetuning approaches to language models, we integrate the advantages of feature-based and fine-tuning-based methods to propose the Pre-train, Interact, Fine-tune (PIF) architecture. We evaluate our proposed models on five widely-used datasets for text classification tasks. Our ensemble method, outperforms state-of-the-art baselines with improvements ranging from 2.03 In addition, we find that, the improvements of PIF against most state-of-the-art methods is not affected by increasing of the length of the text.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro