Predicting Adolescent Suicide Attempts with Neural Networks

11/28/2017
by   Harish S. Bhat, et al.
0

Though suicide is a major public health problem in the US, machine learning methods are not commonly used to predict an individual's risk of attempting/committing suicide. In the present work, starting with an anonymized collection of electronic health records for 522,056 unique, California-resident adolescents, we develop neural network models to predict suicide attempts. We frame the problem as a binary classification problem in which we use a patient's data from 2006-2009 to predict either the presence (1) or absence (0) of a suicide attempt in 2010. After addressing issues such as severely imbalanced classes and the variable length of a patient's history, we build neural networks with depths varying from two to eight hidden layers. For test set observations where we have at least five ED/hospital visits' worth of data on a patient, our depth-4 model achieves a sensitivity of 0.703, specificity of 0.980, and AUC of 0.958.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro